Internal Nucleophilic Termination in Acid-Mediated Polyene Cyclizations

Part 31)

Synthetic Access to Didehydro and Methyl Didehydro Analogues of (±)-Ambrox®

by Roger L. Snowden*, Jean-Claude Eichenberger, Simon Linder, and Philippe Sonnay

Firmenich SA, Corporate R&D Division, P.O. Box 239, CH-1211 Geneva 8 (phone: +41 22 780 36 08; fax: +41 22 780 33 34; e-mail: roger.snowden@firmenich.com)

Dedicated to Dr. Günther Ohloff on the occasion of his 80th birthday

Treatment of the unsaturated allenic alcohols (*E*)-7, (*Z*)-7, 10, 13, and 19 with an excess of FSO₃H in 2-nitropropane at -90° to -30° afforded, in 68-85% yield, diastereoisomer mixtures of racemic tricyclic ethers 14a-d and 20a-d, respectively (*Schemes 3* and 5), with high stereoselectivity (see *Table* and *Scheme 6*). These stereospecific transformations represent the first reported examples of an acid-mediated polyene cyclization, in which an alkene is the initiating group and an allenic alcohol serves as the internal terminator. In close analogy to our earlier work, a nonsynchronous process is postulated, whereby the stereochemical course of cyclization is directed by the conformational structure of an intermediate cyclohexyl cation (see *Schemes 3* and 6). In addition, the organoleptic properties of 14c and 20c, racemic didehydro and methyl didehydro analogues, respectively, of the known odorant $Ambrox^{\otimes}$ ((-)-4f), are briefly discussed.

1. Introduction. – With the aim to find efficient routes to organoleptically active tricyclic ethers possessing the labdane skeleton, we described in 1992 stereoselective syntheses of racemic $Ambrox^{\oplus}$ (4f)²) and of three of its diastereoisomers (see 4c, 4g, and 4d)³) from the appropriate unsaturated acyclic (see 1) or monocyclic (see 2 and 3) homoallylic alcohol, by using an excess of fluorosulfuric acid (FSO₃H) in 2-nitropropane at -90° [1] (*Scheme 1*). These stereospecific reactions represent rare examples of acid-mediated polyene cyclizations in which the initiating group is an alkene and where termination is effected internally by an OH group⁴).

Subsequent work [2], involving the cyclization of Me-substituted analogues of $\mathbf{2}$ and $\mathbf{3}$ (Me groups at C(1) and C(5')), reinforced our mechanistic hypothesis and demonstrated that the efficiency of this reaction is independent of the nature of the OH group, which may be primary, secondary, or tertiary. In continuation of our studies, we now report the acid-mediated cyclizations of a series of unsaturated allenic alcohols.

¹⁾ For Parts 1 and 2, see [1] and [2], resp.

²⁾ Ambrox[®] ((-)-4f; trade name of Firmenich SA) is a commercially important, naturally occurring odorant, see [3][4]; the racemate 4f is commercialized by Firmenich SA under the trade name Cetalox[®] [5].

For the synthesis and spectral characterization of all seven diastereoisomers 4a-g, see [6]; the letters a-g reflect the GC elution order (lower to higher retention times), the same convention being applied for 14a-d and 20a-d (see Exper. Part).

⁴⁾ For related independent studies, see [7]; for a recent *Lewis* acid mediated asymmetric cyclization of (E,E)-1 to 4f, see [8]; for an enzymatic cyclization of the same substrate with squalene cyclase, see [9].

Scheme 1

OH OF
$$(E,E)$$
-1 OH OF (E) -2 OH (E) -2 OH (E) -2 OH (E) -3 OH

i) FSO₃H (10 mol-equiv.), 2-nitropropane, -90° (yield: 40-80%).

Our interest was twofold. First, allenic alcohols have never been reported as terminating groups in polyene cyclizations. Second, if successful, this reaction would offer an efficient access to novel 1,9b-didehydro analogues of **4**, whose organoleptic properties would be of special interest with regard to structure—activity studies [10]⁵).

2. Results and Discussion. – 2.1. Allenic Alcohols (E)-7, (Z)-7, 10, and 13. Configurationally pure samples of the four racemic allenic alcohols (E)- and (Z)-7, 10, and 13⁶) were prepared from ketones (E)- and (Z)-5, 8, and 11, respectively, by using a modified published methodology [12]. This four-step procedure (overall yield ca. 40–60%; see *Scheme* 2) involves: i) base-mediated 1,2-addition of prop-2-yn-1-ol, affording diols (E)- and (Z)-6a, 9a, and 12a, respectively; ii) selective acetylation of the primary OH group to (E)- and (Z)-6b, 9b, and 12b, respectively; iii) protection of the tertiary OH group via acetal formation by using the acid-catalyzed addition of ethyl vinyl ether⁷) without isolation of the doubly protected diol intermediate; and iv) treatment with LiAlH₄ for deprotection of the primary OH group, and concomitant internal hydride displacement of the O-(1-ethoxyethyl) group.

Part of this work has already been described in a Firmenich patent, see [11].

⁶⁾ All chiral compounds synthesized in this work are racemic.

⁷⁾ The use of ethyl vinyl ether, as opposed to the reported 3,4-dihydro-2H-pyran [12], affords higher yields of the allenic alcohols.

- a) 1:1 mixture of diastereoisomers.
- i) Prop-2-yn-1-ol, KOH, THF, r.t. ii) Ac_2O , Et_3N , r.t. iii) Ethyl vinyl ether, cat. $TsOH \cdot H_2O$, toluene, -20° . iv) LiAlH₄, THF, toluene, r.t.

2.2. Acid-Mediated Cyclization (FSO₃H/2-nitropropane) of (E)-7, (Z)-7, 10, and 13 to Tricyclic Ethers 14a-d. The acid-mediated cyclizations of (E)- and (Z)-7, 10, and 13 were effected by treatment of each substrate with an excess of FSO₃H (2.3 mol-equiv.) in 2-nitropropane at -90° to -30° during 1 h (Scheme 3). Subsequent neutralization with aqueous NaHCO₃ solution, extractive workup, and distillation in vacuo afforded mixtures of 14a-d in 68-85% yield; the product distributions, determined by anal. GC, are presented in the Table. Pure samples of each of the four diastereoisomers were obtained by a combination of column chromatography and prep. GC, and fully characterized spectroscopically. Structural attributions were established by inspection of the NMR spectra, and corroborated by catalytic hydrogenation to the dihydro analogs 4a-d, which were identified by GC and spectral comparison with authentic samples $[6]^8$).

A mechanistic rationale for the observed results, analogous to our earlier work [1][2], is presented in *Scheme 3*. The observation that cyclization of either (E)-7 or 10 (*Table, Entries 1* and 3) gives 14c as the major product (88% and 84% selectivity, resp.), whereas (Z)-7 or 13 (*Entries 2* and 5) predominantly afford 14b (83%)

⁸⁾ It is interesting to note that, whereas **14a**, **14c**, and **14d** were almost completely hydrogenated to **4a**, **4c**, and **4d**, resp., **14b** underwent only partial conversion (*ca*. 15%) to **4b** (for details, see *Exper. Part.*).

Scheme 3. Acid-Mediated Cyclizations of (E)- and (Z)-7, 10, and 13: Mechanitic Rationale for Formation of 14a-d

Table. Acid-Mediated Cyclizations of (E)-and (Z)-7, 10, and 13

Entry	Substrate	Product distribution a)b)				Yield [%]
		14a	14b	14c	14d	
1°)	(E)- 7	2	10	88	< 0.5	68
2°)	(Z)-7	< 0.5	83	11	6	84
3°)	10	3	12	84	1	76
4 ^d) ^e)	10	5	23	69	3	64
5	13	< 0.5	83	10	7	85

a) GC Analysis of distilled product after workup. b) Structural attributions by conversions of 14a-d to 4a-d:

i) H₂, [10% Pd/C], toluene, r.t

°) Reaction conditions: substrate (1 g), FSO₃H (1 g), 2-nitropropane (10 ml), -90° to -30° . d) Reaction conditions: substrate (11 g), 95% aq. H₂SO₄ soln. (11 g), CH₂Cl₂, -40° . e) By-products:

selectivity), strongly points to the intermediacy of the diastereoisomeric cyclohexyl cations **I** and **I'**, respectively, both assumed to be 1:1 diastereoisomer mixtures. Thus, **I**, whose side chain is equatorial, can originate from (E)-7 by cyclization of the chair-like, nascent cyclohexane A-ring, or from **10** *via* stereoselective axial protonation of the cyclohexenyl C=C bond⁹). Similarly, **I'**, whose side chain is axial, can be formed by cyclization of (Z)-7 or by protonation of **13**, in which the side chain is pseudoaxial¹⁰). Cyclization of **I** to the allylic cation **II** ('syn'/'anti' diastereoisomer mixture) possessing a *trans* A/B ring junction proceeds *via* selective equatorial C-C bond formation, thus avoiding 1,3-diaxial nonbonding interactions with the axial Me-C(6') group in ring A. Conversely, cyclization of **I'** to allylic cation **II'** ('syn'/'anti' mixture) with a *cis* A/B ring junction can only proceed *via* equatorial C-C bond formation. Our results clearly show

⁹⁾ Kinetically controlled axial protonation of a cyclohexenyl C=C bond is stereoelectronically favored by hyperconjugative stabilization of the cyclohexyl cation by the developing C-H bond [1].

¹⁰⁾ For evidence of this supposition, by molecular-mechanics calculations of a model system or by analogy with known work, see [1].

that interconversion of I and I', by conformational inversion or via a rapid deprotonation/protonation process, is slower than subsequent cyclization¹¹). It is also important to note that the high yields of isolated products, coupled with the fact that only 'syn'-II and 'syn'-II' can undergo ring closure to a dihydrofuran, mean that 'anti'-II and 'anti'-II' must be rapidly converted to their 'syn' diastereoisomer under the reaction conditions 12). Ring closure of the conformationally rigid 'syn'-II, leading to either 14a or 14c, shows a strong preference for the latter diastereoisomer (selectivity > 20:1). This stereoselectivity, attributed to a kinetic preference for equatorial C-O bond-formation opposite to the axial Me-C(9a) group, is reflected in the MM2 energies of 14a and 14c: 42.1 and 38.9 kcal/mol, respectively¹³). In contrast, the conformationally flexible 'syn'-II', able to afford either 14b or 14d, cyclizes in favor of the former diastereoisomer (selectivity > 10:1), correlating again with their MM2 energies: 40.8 and 41.4 kcal/mol, respectively. Here however, the mechanistic interpretation is complicated by the fact that I' can cyclize to II' via two different transition states, in which the nascent B ring is in either a chair-like or a skew-boat conformation 14). The former pathway differs from the latter in that the formation of **14b** necessitates conformational inversion of 'syn'-II' prior to ring closure.

2.3. Acid-Mediated Cyclization (95% aq. H₂SO₄ solution/CH₂Cl₂) of **10**. To find more practical conditions for these acid-mediated cyclizations, we treated **10** with the same excess (2.3 mol-equiv.) of 95% aqueous H₂SO₄ solution in CH₂Cl₂ at – 40° during 3 h. Workup as before afforded a mixture of **14a** (5%), **14b** (23%), **14c** (69%), and **14d** (3%) in 64% yield (*Table*, *Entry* 4). Also isolated and characterized were the unsaturated tricyclic ether **15** (ca. 0.5% yield) and dihydrofuran **16** (ca. 2% yield). Although **14c** is the major product, this reaction is, thus, less selective than that with FSO₃H (*Table*, *Entry* 3). This is probably a consequence of the heterogeneous conditions, which may influence protonation/deprotonation processes by altering sensitive parameters such as effective acid concentration and thermal transfer. With regard to the by-products, whereas **16** is the anticipated product of protonation of the allenyl group followed by ring closure ¹⁵), the formation of **15** is rationalized by cyclization of **10** to spirocyclic carbocation **III**, 1,2-alkyl shift to allylic carbocation **IV**, and final ring closure of the tetrahydrofuran ring (*Scheme* 4).

¹¹⁾ The formation of small amounts (10-15%) of 14b and 14d from (E)-7 and 10, and, conversely, of 14a and 14c from (Z)-7 and 13, resp., is assumed to be due to partial interconversion of I and I'.

Because of the high rotational barrier of an allyl cation (ca. 40 kcal/mol), this rapid 'anti'-to-'syn' conversion must occur by external or internal quenching by a nucleophile followed by C-C bond rotation and regeneration of the allylic cation. The pathway involving an internal quench by the OH group is shown as follows:

¹³) The MM2 energies were calculated with the MacroModel program [13].

¹⁴⁾ Transition states involving skew-boat conformations have already been proposed in analogous cyclizations [1].

¹⁵) For the cyclization of allenic alcohols to dihydrofurans under acidic conditions, see [14].

Scheme 4

2.4. Acid-Mediated Cyclization of Allenic Alcohol 19 to Tricyclic Ethers 20a-d. We now turned our attention to the cyclization of a higher homologue of 10, possessing a supplementary Me-C(5') group. We, thus, posed two questions. First, does this additional substitution affect the stereoselectivity of the cyclization reaction? Second, from a perfumery viewpoint, what are the organoleptic properties of tricyclic ethers resulting from this cyclization? Accordingly, by means of the same procedure as described above for the preparation of 10, dihydro- β -irone (17) [2] was converted to 19 (1:1 diastereoisomer mixture) in four steps via intermediates 18a and 18b (1:1 diastereoisomer mixtures) in 50% overall yield (Scheme 5). Standard cyclization conditions (FSO₃H (2.3 mol-equiv.), 2-nitropropane, -90° to -30°, 1 h) were now applied to 19, to afford, after workup and distillation in vacuo, a mixture of 20a (3%), **20b** (6%), **20c**' (ca. 1%), **20c** (90%), and **20d** (<0.2%) in 75% yield. The major component, 20c, was readily isolated by crystallization, whereas column chromatography and prep. GC of the mother liquors allowed the isolation of a ca. 2:1 inseparable mixture 20b/20a. Structures were assigned on the basis of GC/MS and NMR data, and corroborated by comparison with known dihydro analogs [2]. In contrast, due to

- a) 1:1 mixture of diastereoisomers
- i) Prop-2-yn-1-ol, KOH, THF, r.t. ii) Ac₂O, Et₃N, r.t. iii) Ethyl vinyl ether, cat. TsOH · H₂O, toluene, -20° . iv) LiAIH₄, THF/toluene. v) FSO₃H, 2-nitropropane, -90° to -30° .

ambiguous NMR spectral data, the structures attributed to 20c' and 20d are only speculative.

In close analogy to the cyclization of 10 (*vide supra*), the highly selective cyclization of 19 to 20c can be rationalized by a nonsynchronous pathway involving stereoselective axial protonation of the cyclohexenyl C=C bond to carbocation V (1:1 diastereoisomer mixture), in which both the side chain at C(1') and the Me-C(5') group are equatorial, cyclization to allyl cation VI ('syn'/'anti' mixture), and final ring closure (Scheme 6).

i) FSO₃H (2.3 mol-equiv.), 2-nitropropane, -90° to -30° ; 75% yield.

- 2.5. Organoleptic Properties of **14c** and **20c**. Qualitative rather than quantitative odor evaluations were effected. Thus, in comparison with racemic $Ambrox^{\otimes}$ (**4f**), olfactively very similar to (–)-**4f**, the benchmark ambergris odorant [15], **14c**, despite a lower substantivity, has a similar intensity, exhibiting the same characteristic amber, woody notes. Not unexpectedly, **20c**, its Me–C(7) homologue, is more substantive whilst retaining a typically strong amber, woody character.
- **3. Conclusions.** The key points of the foregoing work may be highlighted as follows: i) we have found a new type of $Br\"{o}nsted$ acid-mediated polyene cyclization in which the initiating group is an alkene and the terminating group is an allenic alcohol; ii) we have reinforced a mechanistic hypothesis postulating a nonsynchronous process, in which the stereochemical course of cyclization is directed by the conformation of an intermediate cyclohexyl cation; iii) we have developed an efficient synthetic access to novel, olfactively active, labdane tricyclic ethers of the $Ambrox^{\otimes}$ family.

We thank Mr. W. Thommen and Mr. R. Brauchli for the measurements and interpretations of the NMR spectral data, Dr. B. Winter for the MM2 calculations, and Prof. D. Arigoni for helpful comments on mechanistic aspects.

Experimental Part

General. Commercially available reagents and solvents of adequate purity were used without further purification. Workup refers to washing of the org. layer to neutrality with aq. HCl soln. and/or NaHCO₃ and NaCl soln., drying (Na₂SO₄), filtration and evaporation of the solvent. Thin-layer chromatography (TLC): 0.25-mm pre-coated $60F_{254}$ silica-gel plates (*Merck*). Column chromatography (CC): silica gel (35 – 70 μm from SDS). Prep. GC: JAS-2000 system equipped with Supelco-SPB-1 capillary column (30 m, 0.53 mm i.d., with 5 μm film) at 185° (isotherm), He flow at 10 ml/min. Anal. GC: Hewlett-Packard-5890 instrument; He as carrier gas; Chrompack-DB-Wax capillary column (15 m, 0.25 mm i.d.) $t_{\rm R}$ in min. Bulb-to-bulb distillation: Büchi-GKR-50 oven; b.p. correspond to the air temp. IR Spectra (liquid film, unless otherwise stated): Perkin-Elmer-297 spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker-DPX-400 or -AV500 spectrometers; in CDCl₃; δ in ppm rel. to Me₄Si (=0 ppm), J in Hz; assignments by COSY45 and HMCQ experiments. MS: Hewlett-

Packard-5890 GC system equipped with a DB-1 or DB-WAX capillary column (30 m, 0.25 mm i.d.) coupled with a $Hewlett-Packard\ MSD-5972$ or -5973 quadrupole mass spectrometer; electron energy ca. 70 eV; in m/z (rel. int. in % of the base peak).

(7E)-4,8,12-Trimethyltrideca-7,11-dien-2-yne-1,4-diol ((E)-6a). A mixture of (5E)-6,10-dimethylundeca-5,9-dien-2-one (Aldrich; (E)-5; 12 g, 0.062 mol) and prop-2-yn-1-ol (3.8 g, 0.068 mol) was added dropwise during 20 min to a stirred slurry of powdered KOH (26 g, 0.46 mol) in THF (90 ml) at 15° under N₂. After 3.5 h, the mixture was poured into a cold soln. of NH₄Cl (29 g) in H₂O (90 ml). The aq. layer was extracted (AcOEt), and the combined org. layer was washed with sat. aq. NaCl soln., dried (Na₂SO₄), and evaporated. CC (cyclohexane/AcOEt 7:3) and bulb-to-bulb distillation i.v. afforded (E)-6a (11.2 g, 72%). Viscous, colorless oil. B.p. $200-220^\circ/0.04$ mbar. IR: 3331 (br.), 2927, 1375, 1055, 600. ¹H-NMR (after exchange with D₂O): 1.49 (s, 3 H); 1.60 (s, 3 H); 1.64 (s, 3 H); 1.69 (s, 3 H); 1.70 (2 H); 1.90-2.30 (6 H); 4.29 (s, 2 H); 5.09 (br. t, t = 7, 1 H); 5.16 (t, t = 7, 1 H). ¹³C-NMR: 136.0 (s); 131.5 (s); 124.3 (t); 123.7 (t); 89.4 (t); 81.8 (t); 68.3 (t); 50.8 (t); 43.4 (t); 39.7 (t); 29.6 (t); 25.7 (t); 25.7 (t); 23.5 (t); 17.7 (t); 16.1 (t). MS: 250 (t). t0.5, t17 (2), 199 (2), 145 (12), 121 (20), 105 (34), 93 (30), 69 (94), 43 (100).

(7E)-4-Hydroxy-4,8,12-trimethyltrideca-7,11-dien-2-ynyl Acetate ((E)-**6b**). Et₃N (5.4 g, 0.054 mol) was added dropwise to a stirred mixture of (E)-**6a** (11.2 g, 0.045 mol) and Ac₂O (5.3 g, 0.052 mol) at 25° under N₂. After 15 min, the cooled mixture was poured into cold 10% aq. HCl soln. (55 ml) and extracted (Et₂O). The org. layer was washed successively with sat. aq. NaHCO₃ soln., H₂O, and sat. aq. NaCl soln., dried (Na₂SO₄), and evaporated. Bulb-to-bulb distillation afforded (E)-**6b** (12 g, 91%). Viscous, colorless oil. B.p. $120-140^\circ$ / 0.03 mbar. ¹H-NMR (after exchange with D₂O): 1.49 (s, 3 H); 1.59 (s, 3 H); 1.65 (s, 3 H); 1.69 (s, 3 H); 1.71 (2 H); 1.95-2.40 (6 H); 2.10 (s, 3 H); 4.71 (s, 2 H); 5.09 (br. t, J = 7, 1 H); 5.18 (t, J = 7, 1 H). MS: 292 (<0.5, M^+), 217 (1), 199 (5), 145 (17), 121 (16), 105 (23), 93 (17), 69 (62), 43 (100).

(7E)-4,8,12-Trimethyltrideca-2,3,7,11-tetraen-1-ol ((E)-7). A soln. of ethyl vinyl ether (3.6 g, 0.049 mol) in toluene (5 ml) was added dropwise during 10 min to a stirred soln. of (E)-6b (12 g, 0.041 mol) in toluene (50 ml) containing TsOH · H₂O (60 mg) at -20° under N₂. After 10 min at -20° , TLC showed complete conversion of (E)-6b to a less polar product (R_f (cyclohexane/AcOEt 4:1) 0.40 compared to R_f 0.10 for (E)-6b), and this mixture was cooled to -50° prior to its dropwise addition during 5 min to a stirred slurry of LiAlH₄ (14 ml of a ca. 3.5M suspension in THF/toluene (Fluka); 0.049 mol) at 20° under N₂. After 2 h at 20°, H₂O (1.9 ml), 20% NaOH soln. (1.9 ml), and H₂O (9.5 ml) were added successively dropwise. Filtration (Celite) and evaporation of the filtrate afforded a pale-yellow oil (9.5 g), which was purified by CC (cyclohexane/AcOEt 4:1) to furnish, after distillation i.v. (Vigreux column), (E)-7 (7.4 g, 77%). Colorless oil. B.p. 102° /0.03 mbar. R_f 0.25 (cyclohexane/AcOEt 4:1). IR: 3329 (br.), 2923, 1965, 1444, 1011. ¹H-NMR (after exchange with D₂O): 1.60 (s, 6 H); 1.68 (s, 3 H); 1.72 (d, J=3, 3 H); 1.95-2.20 (8 H); 4.05 (d, J=6, 2 H); 5.11 (2 H); 5.26 (m, 1 H). ¹³C-NMR: 200.3 (s); 135.7 (s); 131.3 (s); 124.4 (d); 124.0 (d); 102.8 (s); 91.5 (d); 61.0 (t); 39.8 (t); 34.1 (t); 26.8 (t); 26.1 (t); 25.7 (q); 19.2 (q); 17.7 (q); 16.1 (q). MS: 234 (0.5, M⁺), 173 (4), 145 (15), 131 (11), 119 (23), 105 (40), 91 (30), 69 (100), 41 (97).

(7Z)-4,8,12-Trimethyltrideca-7,11-dien-2-yne-1,4-diol ((Z)-6a). As described for (E)-6a, with (7Z)-6,10-dimethylundeca-5,9-dien-2-one (Aldrich; (Z)-5; 12 g, 0.062 mol): (Z)-6a (10.7 g, 69%). Viscous, colorless oil. B.p. (bulb-to-bulb dist.) $200-220^{\circ}/0.05$ mbar. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.08. IR: 3335 (br.), 2929, 1449, 1376, 1095, 1056, 999. ¹H-NMR (after exchange with D₂O): 1.48 (s, 3 H); 1.62 (s, 3 H); 1.69 (2 H); 1.70 (s, 6 H); 2.00-2.30 (6 H); 4.27 (s, 2 H); 5.13 (1 H); 5.16 (t, J=7,1 H). ¹³C-NMR: 136.1 (s); 131.7 (s); 124.6 (d); 124.4 (d); 89.5 (s); 81.8 (s); 68.3 (s); 50.8 (t); 43.7 (t); 32.0 (t); 29.6 (2q); 26.6 (t); 25.7 (q); 23.4 (t); 17.7 (q). MS: 250 (<0.5, M^+), 217 (2), 199 (82), 145 (15), 121 (18), 105 (29), 93 (32), 69 (100).

(7Z)-4-Hydroxy-4,8,12-trimethyltrideca-7,11-dien-2-ynyl Acetate ((Z)-**6b**). As described for (E)-**6b**, with (Z)-**6a** (11.4 g, 0.046 mol): (Z)-**6b** (12.5 g, 94%). Colorless oil. B.p. $127^{\circ}/0.03$ mbar. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.25. ¹H-NMR (after D₂O exchange): 1.48 (s, 3 H); 1.61 (s, 3 H); 1.69 (s, 3 H); 2.00 – 2.35 (6 H); 2.09 (s, 3 H); 4.70 (s, 2 H); 5.12 (m, 1 H); 5.17 (t, J = 7, 1 H). MS: 292 (<0.5, M⁺), 217 (3), 199 (7), 145 (17), 121 (18), 105 (26), 93 (23), 69 (89), 43 (100).

 $(7Z)\text{-}4,8,12\text{-}Trimethyltrideca-2,3,7,11\text{-}tetraen-1\text{-}ol\ ((Z)\text{-}\mathbf{7})\text{. As described for the preparation of }(E)\text{-}\mathbf{7},\text{ with }(Z)\text{-}\mathbf{6b}\ (12.5\text{ g},\ 0.043\text{ mol})\text{: }(Z)\text{-}\mathbf{7}\ (6.5\text{ g},\ 65\%)\text{. Colorless oil. B.p. }99^\circ/0.04\text{ mbar. }R_f\ (\text{cyclohexane/AcOEt }4:1)\ 0.32\text{. IR: }3329\ (\text{br.})\text{, }2926\text{, }1965\text{, }1445\text{, }1376\text{, }1012\text{. }^1\text{H-NMR}\ (after exchange with }D_2\text{O})\text{: }1.61\ (s,3\text{ H})\text{; }1.69\ (2s,6\text{ H})\text{; }1.72\ (d,J=3,3\text{ H})\text{; }1.95-2.20\ (8\text{ H})\text{; }4.05\ (d,J=6,2\text{ H})\text{; }5.12\ (2\text{ H})\text{; }5.27\ (m,1\text{ H})\text{. }^{13}\text{C-NMR: }200.4\ (s)\text{; }135.9\ (s)\text{; }131.6\ (s)\text{; }124.8\ (d)\text{; }124.4\ (d)\text{; }102.6\ (s)\text{; }91.6\ (d)\text{; }61.0\ (t)\text{; }34.4\ (t)\text{; }32.1\ (t)\text{; }26.6\ (t)\text{; }26.0\ (t)\text{; }25.7\ (q)\text{; }23.4\ (q)\text{; }19.1\ (q)\text{; }17.6\ (q)\text{. MS: }234\ (1,M^+)\text{, }173\ (14)\text{, }145\ (30)\text{, }131\ (30)\text{, }119\ (38)\text{, }105\ (60)\text{, }91\ (54)\text{, }69\ (85)\text{, }41\ (100)\text{.}$

4-Methyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hex-2-yne-1,4-diol (**9a**). As described for (*E*)-**6a**, with 4-(2,6,6-trimethylcyclohex-1-en-1-yl)butan-2-one (**8**; 20 g, 0.103 mol): **9a** (19.1 g, 80%). Pale-yellow powder. Purification by recrystallization (petroleum ether). B.p. $80-100^{\circ}$. M.p. $83-84^{\circ}$. $R_{\rm f}$ (cyclohexane/AcOEt 1:1) 0.32. IR (CHCl₃): 3530, 3350 (br.), 2900, 2840, 1440, 1360, 1344, 1082, 1040, 980. ¹H-NMR (after exchange with D₂O): 1.00 (*s*, 6 H); 1.41 (*s*, 3 H); 1.50 (2 H); 1.57 (2 H); 1.61 (*s*, 3 H); 1.73 (2 H); 1.90 (br. *t*, J=7, 2 H); 2.19 (2 H); 4.30 (*s*, 2 H). ¹³C-NMR: 136.3 (*s*); 127.5 (*s*); 89.5 (*s*); 81.7 (*s*); 68.3 (*s*); 50.7 (*t*); 43.5 (*t*); 39.9 (*t*); 35.2 (*s*); 32.8 (*t*); 29.3 (*q*); 23.6 (*t*); 19.8 (*q*); 19.6 (*t*). MS: 250 (<0.5, M^+), 232 (9), 217 (19), 161 (37), 145 (40), 133 (40), 121 (100), 105 (79), 95 (87), 81 (80).

4-Hydroxy-4-methyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hex-2-ynyl Acetate (**9b**). As described for (*E*)-**6b**, with **9a** (25 g, 0.1 mol): **9b** (28.3 g, 97%). Viscous, colorless oil. B.p. $144-150^{\circ}/0.05$ mbar. $R_{\rm f}$ (cyclohexane/AcOEt 7:3) 0.41. IR (CHCl₃): 3540, 3380 (br.), 2900, 2850, 1722, 1440, 1368, 1350, 1220, 1100, 958. ¹H-NMR (after exchange with D₂O): 1.00 (*s*, 6 H); 1.41 (2 H); 1.49 (*s*, 3 H); 1.56 (2 H); 1.60 (*s*, 3 H); 1.73 (2 H); 1.90 (br. *t*, J=7,2 H); 2.09 (*s*, 3 H); 2.19 (2 H); 4.71 (*s*, 2 H). MS: 292 (<0.5, M^+), 274 (8), 217 (31), 199 (27), 161 (36), 143 (44), 121 (100), 105 (71), 95 (94), 81 (76).

4-Methyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hexa-2,3-dien-1-ol (10). As described for (*E*)-7, with 9b (22.5 g, 0.077 mol): 10 (15 g, 83%). Colorless oil. B.p. (bulb-to-bulb dist.) $150-180^{\circ}/0.05$ mbar. $R_{\rm f}$ (cyclohexane/AcOEt 7:3) 0.41. IR (CHCl₃ soln.): 3560, 3400 (br.), 2920, 2850, 1944, 1460, 1370, 1358, 1108, 1072, 990.

¹H-NMR (after exchange with D₂O): 0.98 (s, 6 H); 1.41 (2 H); 1.56 (2 H); 1.58 (s, 3 H); 1.74 (d, J = 3, 3 H); 1.90 (br. t, J = 7, 2 H); 1.99 (2 H); 2.08 (2 H); 4.08 (d, J = 5, 2 H); 5.30 (m, 1 H). 13 C-NMR: 200.0 (s); 137.0 (s); 127.4 (s); 103.6 (s); 91.6 (d); 61.1 (t); 39.9 (t); 35.0 (t); 34.4 (t); 32.8 (t); 28.6 (2t); 27.1 (t); 19.8 (t); 19.6 (t), 19.2 (t). MS: 234 (2, t), 219 (5), 145 (36), 133 (29), 121 (39), 107 (46), 95 (100), 81 (70).

4-Methyl-6-(2,6,6-trimethylcyclohex-2-en-1-yl)hex-2-yn-1,4-diol (12a; 1:1 diastereoisomer mixture). As described for (*E*)-6a, with 4-(2,6,6-trimethylcyclohex-2-enyl)butan-2-one (11; 20 g, 0.103 mol): 12a (20.5 g, 86%). Viscous, colorless oil. Purification by CC (cyclohexane/AcOEt 7:3) and bulb-to-bulb distillation *i.v.* B.p. $200-220^{\circ}/0.5$ mbar. R_f (cyclohexane/AcOEt 4:1) 0.13. IR: 3332 (br.), 2951, 1364, 1143, 1057, 1001. ¹H-NMR (after exchange with D₂O): 0.87 (*s*, 3 H); 0.94 (*s*, 3 H); 1.13 (*m*, 1 H); 1.46 (*s*, 3 H); 1.35 – 1.80 (6 H); 1.68 (*s*, 3 H); 1.96 (2 H); 4.26 (*s*, 2 H); 5.31 (1 H). ¹³C-NMR: 136.2 (*s*); 120.5 (*d*); 89.6 (*s*); 81.6 (*s*); 68.4 (*s*); 50.7 (*t*); 49.2 (*d*); 43.6 (*t*); 32.7 (*s*); 31.8 (*t*); 29.4 (*q*); 27.7 (*q*); 27.6 (*q*); 25.6 (*t*); 23.4 (*q*); 23.0 (*t*). MS: 250 (0.5, M^+), 136 (100), 121 (87), 105 (53), 95 (59), 81 (98), 43 (85).

4-Hydroxy-4-methyl-6-(2,6,6-trimethylcyclohex-2-en-1-yl)hex-2-ynyl Acetate (12b; 1:1 diastereoisomer mixture). As described for (E)-6b, with 12a (21.5 g, 0.086 mol): 12b (23.2 g, 92%). Viscous, colorless oil. Bp. 135°/0.05 mbar. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.29. ¹H-NMR (after exchange with D₂O): 0.88 (s, 3 H); 0.94 (s, 3 H); 1.13 (m, 1 H); 1.35 – 1.80 (6 H); 1.47 (s, 3 H); 1.68 (s, 3 H); 1.96 (2 H); 2.09 (s, 3 H); 4.69 (s, 2 H); 5.32 (1 H). ¹³C-NMR: 170.3 (s); 136.2 (s); 120.5, 120.4 (2 d); 90.6 (s); 77.2 (s); 68.3 (s); 52.3 (t); 49.1 (d); 43.6 (t); 32.7 (s); 31.8 (t); 29.4 (q); 27.7 (q); 27.5 (q); 25.6, 25.5 (2 t); 23.3 (q); 23.0 (t); 20.7 (q). MS: 292 (<0.5, M^+), 158 (13), 143 (18), 136 (96), 121 (60), 81 (43), 43 (100).

4-Methyl-6-(2,6,6-trimethylcyclohex-2-en-1-yl)hexa-2,3-dien-1-ol (13; 1:1 diastereoisomer mixture). As described for (*E*)-7, with 12b (22.5 g, 0.077 mol): 13 (14.3 g, 79%). Colorless oil. B.p. 95 – 100°/0.03 mbar. $R_{\rm f}$ (cyclohexane/AcOEt 4:1) 0.27. IR: 3322 (br.), 2933, 1965, 1446, 1384, 1013. ¹H-NMR (after exchange with D₂O): 0.87 (s, 3 H); 0.92 (s, 3 H); 1.12 (m, 1 H); 1.35 – 1.75 (4 H); 1.67 (s, 3 H); 1.72 (d, J = 3, 3 H); 1.85 – 2.10 (4 H); 4.07 (d, J = 7, 2 H); 5.27 (m, 1 H); 5.31 (m, 1 H). ¹³C-NMR: 200.3 (s); 136.4 (s); 120.3 (d); 103.2 (s); 91.4 (d); 61.1 (t); 49.1, 49.0 (2 d); 34.4 (t); 32.6 (s); 31.7 (t); 29.1 (t); 27.6, 27.5 (2 q). MS: 234 (1, M⁺), 201 (11), 145 (18), 136 (36), 121 (100), 107 (47), 93 (60), 81 (73).

Acid-Mediated Cyclization (FSO₃H/2-nitropropane) of (E)-7, (Z)-7, 10, and 13. (3aRS,5aRS,9aRS)-, (3aRS,5aRS,9aSR)-, and (3aRS,5aSR,9aSR)-, and (3aRS,5aSR,9aSR)-2, 3a,4,5,5a,6,78,9,9a-Decahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan (14a-d). A soln. of the substrate (1 g, 4.3 mmol) in 2-nitropropane (10 ml) was added dropwise during 10 min to a stirred slurry of FSO₃H (Bayer; 1 g, 10 mmol) in 2-nitropropane (10 ml) at -90° (cooling bath: liq. N_2 /MeOH) under N_2 . After 15 min at -90° , the dark-violet mixture was allowed to attain -30° during 30 min and then poured into a cold soln. of NaHCO₃ (6 g) in H_2 O (50 ml). Extraction (Et₂O), workup, and bulb-to-bulb distillation i.v. (b.p. $140-160^{\circ}/0.04$ mbar) afforded the mixture 14a-d as a pale-yellow oil (ca.0.7-0.9 g) whose composition was determined by GC (column temp. $100-220^{\circ}$, 15° /min; see Table): t_R 5.63 (14a), 5.69 (14b), 6.17 (14c), and 6.40 (14d). A combination of prep. GC and CC (toluene) was used to isolate pure samples of each diastereoisomer for spectral characterization.

Data of **14a**: ¹H-NMR: 0.88 (s, 3 H); 0.91 (s, 3 H); 1.13 (s, 3 H); 1.38 (s, 3 H); 1.00 – 2.20 (11 H); 4.37 (dd, J = 13, 3, 1 H); 4.58 (dd, J = 13, 1.5, 1 H); 5.45 (br. s, 1 H). ¹³C-NMR: 159.4 (s, C(9b)); 116.6 (d, C(1)); 86.4 (s, C(3a)); 71.8 (t, C(2)); 45.2 (d, C(5a)); 42.3 (t, C(4)); 40.3 (t, C(7)); 37.6 (s, C(9a)); 33.5 (q, Me_a – C(6)); 33.4 (s, C(3a)); 71.8 (t, C(3a)); 71.8 (t,

C(6)); 33.3 (t, C(9)); 26.7 (q, Me-C(3a)); 26.0 (q, Me-C(9a)); 21.4 $(q, Me_{\beta}-C(6))$; 19.4 (t, C(8)); 17.7 (t, C(5)). MS: 234 $(12, M^+)$, 219 (100), 149 (17), 123 (17), 110 (31), 97 (69), 81 (49), 69 (32).

Data of **14b**: ¹H-NMR: 0.93 (s, 3 H); 0.94 (s, 3 H); 1.15 (s, 3 H); 1.42 (s, 3 H); 1.00 – 2.00 (11 H); 4.47 (dd, J = 13, 3, 1 H); 4.56 (dd, J = 13, 1.5, 1 H); 5.42 (br. s, 1 H). ¹³C-NMR: 150.8 (s, C(9b)); 116.6 (d, C(1)); 86.6 (s, C(3a)); 71.5 (t, C(2)); 50.5 (d, C(5a)); 44.2 (t, C(7)); 39.9 (t, C(9)); 37.2 (s, C(9a)); 37.0 (t, C(4)); 34.8 (s, C(6)), 33.1 (q, Me_a –C(6)); 32.1 (q, Me–C(9a)); 28.0 (q, Me–C(3a); 26.1 (q, Me_β –C(6)); 20.3 (t, C(5)); 19.0 (t, C(8)). MS: 234 (7, M⁺), 219 (65), 110 (70), 97 (100), 81 (58), 69 (30).

Data of **14c**: M.p. $37-40^{\circ}$. IR (CHCl₃): 2950, 1460, 1380, 1140, 1100, 1060, 1020. ¹H-NMR: 0.86 (s, 3 H); 0.87 (s, 3 H); 0.94 (dd, J = 13, 3.5, 1 H); 1.08 (s, 3 H); 1.16 (m, 1 H); 1.38 (s, 3 H); 1.35 – 1.80 (8 H); 2.00 (dt, J = 13, 3.5, 1 H); 4.47 (dd, J = 13, 3.5, 1 H); 4.58 (dd, J = 13, 1.5, 1 H); 5.23 (br. s, 1 H). ¹³C-NMR: 156.5 (s, C(9b)); 113.1 (d, C(1)); 87.2 (s, C(3a)); 72.1 (t, C(2)); 55.3 (d, C(5a)); 42.2 (t, C(4)); 42.1 (t, C(7)); 38.1 (t, C(9)); 37.7 (s, C(9a)); 33.6 (s, C(6)); 33.4 (q, Me_a —C(6)); 26.4 (q, Me—C(3a)); 21.5 (q, Me_p —C(6)); 20.3 (t, C(5)); 19.9 (q, Me—C(9a)); 18.6 (t, C(8)). MS: 234 (19, M⁺), 219 (100), 191 (32), 110 (36), 97 (66), 81 (51), 69 (37).

Data of **14d**: ¹H-NMR: 0.91 (*s*, 3 H); 1.17 (*s*, 3 H); 1.39 (*s*, 3 H); 1.41 (*s*, 3 H); 1.00 – 2.00 (11 H); 4.47 (*dd*, J = 13, 3, 1 H); 4.59 (*dd*, J = 13, 1.5, 1 H); 5.47 (br. *s*, 1 H). ¹³C-NMR: 154.8 (*s*, C(9b)); 118.5 (*d*, C(1)); 86.6 (*s*, C(3a)); 71.6 (*t*, C(2)); 52.5 (*d*, C(5a)); 40.5 (*t*, C(4)); 39.6 (*s*, C(9a)); 34.9 (*t*, C(7)); 33.7 (*s*, C(6)); 33.7 (*q*, Me_{β} –C(6)); 32.2 (*t*, C(9)); 31.4 (*q*, Me_{α} –C(6)); 27.6 (*q*, Me–C(9a)); 25.7 (*q*, Me–C(3a)); 23.9 (*t*, C(5)); 19.3 (*t*, C(8)). MS: 234 (8, M^+), 219 (40), 149 (11), 110 (58), 97 (100), 81 (32).

Catalytic Hydrogenation of 14a-d: (3aRS,5aRS,9aRS,9aRS,9bSR)-, (3aRS,5aRS,9aSR,9bSR)-, (3aRS,5aSR,9aSR,9bSR)-, and (3aRS,5aSR,9aRS,9bSR)-Dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan (4a-d). A stirred soln. of 14a (8%), 14b (24%), 14c (64%), and 14d (4%) (0.1 g, 0.43 mmol) in toluene (2 ml) containing 10% Pd/C (0.1 g) was hydrogenated (1 bar H₂) at r.t. during 3 h. After filtration (*Celite*), the product was analyzed by GC and, by comparison with authentic samples of 4a-d [5], shown to consist of a mixture of 4a (8%), 4b (4%), 4c (63%), and 4d (4%), besides unreacted 14b (20%) and 14c (1%). GC (column temp. $100-220^{\circ}$, 15° /min): t_R 5.91 (4a), 6.06 (4b), 6.27 (4c), and 6.37 (4d).

Acid-Mediated Cyclization (95% aq. H_2SO_4 soln./C H_2Cl_2) of **10**. A soln. of **10** (11 g, 0.044 mol) in C H_2Cl_2 (30 ml) was added dropwise during 1 h to a mechanically stirred slurry of 95% aq. H_2SO_4 soln. (11 g, 0.11 mol) in C H_2Cl_2 (110 ml) at -40° under N_2 . The dark-red mixture was stirred for a further 3 h at -40° and then poured slowly into a cold soln. of NaHCO₃ (20 g) in H_2O (250 ml), which was stirred during 30 min, allowing the mixture to attain r.t. The resulting white emulsion was partially concentrated i.v. (30°/15 mbar), and the residue was extracted with Et₂O. Workup gave a viscous orange oil (11.2 g), which was distilled i.v. (Vigreux column): colorless oil (6.5 g, 64%) composed of **14a** (5%), **14b** (23%), **14c** (69%), and **14d** (3%). Trace amounts of (6aRS,10aSR)-3,5,6,6a,7,8,9,10-octahydro-4,6a,10,10-tetramethyl-2H-naphtho[8a,1-b]furan (**15**; ca. 0.5% of crude product mixture) and 2,5-dihydro-2-methyl-2-[2-(2,6,6-trimethylcyclohex-1-en-1-yl)ethyl]furan (**16**; ca. 2.5% of crude product mixture) were isolated from head fractions and purified by CC (toluene) and bulb-to-bulb distillation i.v. (b.p. 130–150°/0.05 mbar).

Data of **16**: R_t (toluene) 0.30. IR (CHCl₃): 2950, 1460, 1082, 1048, 916. ¹H-NMR: 0.97 (s, 3 H); 0.98 (s, 3 H); 1.29 (s, 3 H); 1.40 (2 H); 1.58 (s, 3 H); 1.50 – 1.75 (4 H); 1.89 (t, J = 7, 2 H); 2.00 (m, 2 H); 4.65 (m, 2 H); 5.71 (dt, J = 7, 3, 1 H); 5.83 (br. d, J = 7, 1 H). ¹³C-NMR: 137.2 (s); 133.6 (d); 126.8 (s); 125.6 (d); 90.4 (s); 74.8 (t); 41.2 (t); 40.0 (t); 35.1 (s); 32.8 (t); 28.7 (2q); 26.3 (q); 23.2 (t); 19.7 (q); 19.6 (t). MS: 234 (1, M⁺), 121 (5), 95 (19), 83 (100), 55 (10).

4-Methyl-6-(2,5,6,6-tetramethylcyclohex-1-en-1-yl)hex-2-yne-1,4-diol (18a; 1:1 diastereoisomer mixture). A mixture of 4-(2,5,6,6-tetramethylcyclohex-1-en-1-yl)butan-2-one [2] (17; 13 g, 0.061 mol; $R_{\rm f}$ (cyclohexane/AcOEt 7:3) 0.55) and prop-2-yn-1-ol (4 g, 0.071 mol) was added dropwise during 1.5 h to a mechanically stirred slurry of powdered KOH (26 g, 0.46 mol) in THF (100 ml) at 20° under N_2 . After 3 h at 20°, the brown mixture was poured into a cold soln. of NH₄Cl (28 g) in H₂O (100 ml). Extraction (Et₂O), workup, CC (cyclohexane/AcOEt 7:3), and bulb-to-bulb distillation *i.v.* afforded 18a (12.3 g, 77%). Viscous, pale-yellow oil. B.p. 180–200°/0.5 mbar. $R_{\rm f}$ (cyclohexane/AcOEt 7:3) 0.14. IR (CHCl₃): 3620, 3388 (br.), 3019, 2970, 1374, 1215, 1056, 932. ¹H-NMR (after exchange with D₂O): 0.85 (s, 3 H); 0.87 (d, J = 7, 3 H); 1.02 (2s, 3 H); 1.25 – 2.05 (7 H); 1.50 (s, 3 H); 1.62 (s, 3 H); 2.20 (m, 2 H); 4.30 (s, 2 H). ¹³C-NMR: 136.4 (s); 127.2 (s); 89.5 (s); 81.7 (s); 68.3 (s); 50.7

(*t*); 43.5 (*t*); 39.4 (*d*); 38.4 (*s*); 31.7 (*t*); 29.3 (*q*); 27.3 (*t*); 27.1 (*q*); 23.9 (*t*); 21.8 (*q*); 19.9 (*q*); 16.7 (*q*). MS: 264 (<0.5, *M*⁺), 246 (3), 231 (11), 145 (34), 135 (82), 121 (57), 107 (66), 95 (78), 43 (100).

4-Hydroxy-4-methyl-6-(2,5,6,6-tetramethylcyclohex-1-en-1-yl)hex-2-ynyl Acetae (18b; 1:1 diastereoisomer mixture). As described for (E)-6b, with 18a (6 g, 0.022 mol): 18b (6.8 g, 98%). Viscous, pale-yellow oil. B.p. 145 – 148°/0.05 mbar. R_t (cyclohexane/AcOEt 7:3) 0.38. IR (CHCl₃): 3599, 3480 (br.), 3019, 2970, 1737, 1434, 1377, 1216, 1027, 965. ¹H-NMR (after exchange with D₂O): 0.85 (s, 3 H); 0.88 (d, d = 7, 3 H); 1.02 (s, 3 H); 1.25 – 2.30 (9 H); 1.50 (s, 3 H); 1.62 (s, 3 H); 2.10 (s, 3 H); 4.72 (s, 2 H). ¹³C-NMR: 170.3 (s); 136.3 (s), 127.2 (s); 90.6 (s); 77.3 (s); 68.2 (s); 52.3 (t); 43.5 (t); 39.4 (d); 38.4 (s); 31.7 (t); 29.3 (q); 27.3 (t); 27.0 (q); 23.9 (t); 21.8 (q); 20.7 (q); 19.9 (q); 16.6 (q). MS: 306 (0, M⁺), 288 (1), 231 (8), 213 (9), 175 (20), 157 (20), 145 (23), 135 (58), 121 (52), 107 (40), 95 (45), 43 (100).

4-Methyl-6-(2,5,6,6-tetramethylcyclohex-1-en-1-yl)hexa-2,3-dien-1-ol (19; 1:1 diastereoisomer mixture). As described for (*E*)-7, with 18b (6.4 g, 0.021 mol): 19 (3.4 g, 66%). Viscous, colorless oil. B.p. $108-114^{\circ}/0.05$ mbar. $R_{\rm f}$ (toluene/AcOEt 9:1) 0.32. IR (CHCl₃): 3612, 3480, (br.), 3018, 2970, 1373, 1215, 1008. ¹H-NMR (after exchange with D₂O): 0.83 (*s*, 3 H); 0.88 (*d*, J=7,3 H); 1.00 (*s*, 3 H); 1.25 – 1.60 (3 H); 1.59 (*s*, 3 H); 1.75 (*d*, J=3,3 H); 1.65 – 2.20 (6 H); 4.09 (*d*, J=7,2 H); 5.31 (*m*, 1 H). 13 C-NMR: 200.0 (*s*); 137.1 (*s*); 127.1 (*s*); 103.5 (*s*); 91.6 (*d*); 61.2 (*t*); 39.4 (*d*); 38.2 (*d*); 34.5 (*t*); 31.7 (*t*); 27.3 (*t*); 27.0 (*q*); 21.8 (*q*); 19.9 (*q*); 19.2 (*q*); 16.7 (*q*). MS: 248 (<0.5, M^+), 147 (30), 133 (39), 121 (55), 109 (57), 95 (100), 81 (48), 67 (57).

(3aRS,5aRS,7RS,9aRS)-, (3aRS,5aRS,7RS,9aSR)-, (3aRS,5aSR,7RS,9aSR)-, (3aRS,5aSR,7SR,9aSR)-, and (3aRS,5aSR,7SR,9aRS)-2,3a,4,5,5a,6,7,8,9,9a-Decahydro-3a,6,6,7,9a-pentamethylnaphtho[2,1-b]furan (20a, 20b, 20c', 20c, and 20d, resp.). A soln. of 19 (1.6 g, 6.3 mmol) in 2-nitropropane (8 ml) was added dropwise during 15 min to a stirred slurry of FSO_3H (1 ml, 0.017 mmol) in 2-nitropropane (10 ml) at -90° under N_2 . After 15 min at -90° , the dark-violet mixture was allowed to attain -30° during 1 h and then poured into a cold soln. of $NaHCO_3$ (6 g) in H_2O (50 ml). Extraction (Et_2O), workup, and bulb-to-bulb distillation i.v. (b.p. $140-160^\circ/0.04$ mbar) afforded the crude mixture 20a-d, which was analyzed by GC: in ascending order of elution, 20a (3%), 20b (6%), 20c' (ca. 1%), 20c (90%), and 20d (<0.2%). Repeated low-temperature recrystallization (petroleum ether) afforded 20c (0.79 g, 50%). White crystals. M.p. $86-88^\circ$. R_f (toluene/cyclohexane, 19:1) 0.32.

Data of **20c**: IR (CHCl₃): 2971, 1456, 1378, 1215, 1136, 1056, 1014, 855. ¹H-NMR: 0.70 (s, 3 H); 0.85 (d, J = 7, 3 H); 0.89 (s, 3 H); 0.92 (m, 1 H); 1.06 (s, 3 H); 1.20 (m, 1 H); 1.30 – 1.60 (5 H); 1.39 (s, 3 H); 1.68 – 1.78 (2 H); 2.00 (m, 1 H); 4.47 (dd, J = 11.5, 3, 1 H); 4.58 (d, J = 11.5, 1 H); 5.23 (br. s, 1 H). ¹³C-NMR: 156.6 (s, C(9b)); 113.3 (d, C(1)); 86.9 (s, C(3a)); 72.1 (t, C(2)); 56.1 (d, C(5a)); 42.6 (d, C(7)); 42.0 (t, C(4)); 37.9 (t, C(9)); 36.7 (s, C(6)); 29.3 (q, Me_q – C(6)); 27.4 (t, C(8)); 26.3 (q, Me – C(3a)); 20.4 (t, C(5)); 19.8 (q, C(9a)); 16.4 (q, Me – C(7)); 16.3 (q, Me_p – C(6)). MS: 248 (12, M +), 233 (58), 163 (11), 149 (43), 97 (100).

CC (toluene/AcOEt 19:1) and prep. GC of the mother liquors from the recrystallization (*vida supra*) resulted in the isolation of two fractions. *Fraction 1* (colorless oil; 80 mg, 5%) is a *ca.* 2:1 inseparable mixture **20b/20a**. B.p. 140–160°/0.04 mbar. $R_{\rm f}$ (toluene/AcOEt 19:1) 0.36. IR (CHCl₃): 2970, 1457, 1378, 1215, 1053. *Data of* **20a**: 1 H-NMR: 0.75 (s, 3 H); 0.85 (d, J=7, 3 H); 0.88 (s, 3 H); 1.10 (s, 3 H); 1.37 (s, 3 H); 4.38 (dd, J=12, 3, 1 H); 4.46 (dd, J=12, 3, 1 H); 5.44 (br. s, 1 H). 13 C-NMR: 159.3 (s, C(9b)); 116.6 (d, C(1)); 86.4 (s, C(3a)); 71.9 (t, C(2)); 48.5 (d, C(5a)); 40.3 (t, C(4)); 39.5 (d, C(7a)); 37.1 (s, C(9a)); 36.5 (s, C(6)); 33.9 (t, C(9a)); 37.1 (s, C(9a)); 36.5 (s, C(6a)); 33.9 (t, C(9a)); 37.1 (s, C(9a))

 $C(3a)); 71.9 \ (t, C(2)); 48.5 \ (d, C(5a)); 40.3 \ (t, C(4)); 39.5 \ (d, C(7)); 37.1 \ (s, C(9a)); 36.5 \ (s, C(6)); 33.9 \ (t, C(9)); 31.4 \ (q, Me_a - C(6)); 29.4 \ (q, Me_{\beta} - C(6)); 28.2 \ (t, C(8)); 25.7 \ (q, Me - C(3a)); 17.9 \ (t, C(5)); 16.4 \ (q, Me - C(7)); 15.4 \ (q, Me - C(9a)). MS: 248 \ (8, M^+), 233 \ (50), 149 \ (39), 123 \ (20), 110 \ (19), 97 \ (100), 81 \ (32).$

Data of **20b**: ¹H-NMR: 0.87 (*d*, *J* = 7, 3 H); 0.93 (*s*, 3 H); 0.98 (*s*, 3 H); 1.24 (*s*, 3 H); 1.40 (*s*, 3 H); 4.50 (br. *d*, *J* = 12, 1 H); 4.58 (br. *d*, *J* = 12, 1 H); 5.42 (br. *s*, 1 H). ¹³C-NMR: 154.6 (*s*, C(9b)); 116.2 (*d*, C(1)); 86.9 (*s*, C(3a)); 72.0 (*t*, C(2)); 46.5 (*s*, C(5a)); 43.0 (*d*, C(7)); 38.8 (*t*, C(4)); 37.8 (*s*, C(9a)); 36.4 (*s*, C(6)); 34.3 (*t*, C(9)); 29.9 (*q*, Me_a –C(6)); 29.0 (*q*, $Me_β$ –C(6)); 27.6 (*q*, Me–C(3a)); 26.8 (*q*, Me–C(9a)); 26.6 (*t*, C(8)); 21.1 (*t*, C(5)); 16.2 (*q*, Me–C(7)). MS: 248 (4, M⁺), 233 (18), 149 (11); 110 (97), 97 (100), 81 (30).

Fraction 2 (colorless oil; 40 mg, 2.5%) is a ca. 4:15:1 mixture **20c'/20c/20d**. B.p. 140 – 160°/0.04 mbar. $R_{\rm f}$ (toluene/AcOEt 19:1) 0.32 – 0.36.

 $\textit{Data of 20c':} \ MS: 248 \ (12, M^+), 233 \ (75), 191 \ (32), 149 \ (55), 110 \ (56), 97 \ (100), 81 \ (48).$

Data of **20d**: MS: 248 (4, M⁺), 233 (21), 149 (25), 110 (97), 97 (100), 81 (26).

REFERENCES

- [1] R. L. Snowden, J.-C. Eichenberger, S. M. Linder, P. Sonnay, C. Vial, K. H. Schulte-Elte. J. Org. Chem. 1992, 57 955
- [2] R. L. Snowden, J.-C. Eichenberger, W. Giersch, W. Thommen, K. H. Schulte-Elte, Helv. Chim. Acta 1993, 76, 1608.
- [3] G. Ohloff, 'Scent and Fragrances The Fascination of Odors and their Chemical Perspectives', Springer-Verlag, Berlin, 1994, p. 24.
- [4] G. Frater, J. A. Bajgrowicz, P. Kraft, Tetrahedron 1998, 54, 7633.
- [5] C. Chauffat, A. Morris, Perfum. Flavor. 2004, 29, 34.
- [6] G. Ohloff, W. Giersch, W. Pickenhagen, A. Furrer, B. Frei, Helv. Chim. Acta 1985, 68, 2022.
- [7] P. F. Vlad, N. D. Ungar, V. B. Perutskii, Khim. Geterotsikl Soedin SSSR 1990, 26, 896.
- [8] K. Ishihara, H. Ishibashi, H. Yamamoto, J. Am. Chem. Soc. 2002, 124, 3647.
- [9] S. Neumann, H. Simon, Biol. Chem. Hoppe-Seyler 1986, 367, 723.
- [10] B. Winter, in 'QSAR: Quantitative Structure Activity Relationships in Drug Design', Proceedings of the 7th European Symposium on QSAR, Interlaken, Switzerland, Sept. 5-9, 1988, Ed. J. L. Fauchère, A. R. Liss, Inc., New York, 1989, p. 401.
- [11] R. L. Snowden, S. D. Escher, to Firmenich SA, Eur. Pat. EP 558928, 1993 (Chem. Abstr. 1994, 120, 107408).
- [12] J. S. Cowie, P. D. Landor, S. R. Landor, J. Chem. Soc., Perkin Trans. 1 1973, 720.
- [13] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caulfield, G. Chang, T. Hendrickson, W. C. Still, J. Comput. Chem. 1990, 11, 440.
- [14] R. Gelin, S. Gelin, M. Albrand, Bull. Soc. Chim. Fr. 1972, 720.
- [15] G. Büchi, H. Wüest, Helv. Chim. Acta 1989, 72, 996.

Received February 19, 2004